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Data on Young's modulus and Poisson's ratio obtained in AIS1-1080 steel, in the temperature 
region between about 300 and 600 K, are presented. The measurements have been performed 
in longitudinal excitation and several harmonics were used, to obtain Poisson's ratio from the 
measured resonant frequencies. The maximum observed in the temperature dependence of 
Young's modulus, for the fundamental resonant frequency, is attributed to a stress-induced 
disordering of carbon atoms in the octahedral interstices of the martensitic matrix. The increases 
of Young's modulus with temperature are described in terms of expressions deduced in the 
paper, which are based on Landau theory of second-order phase transitions. The critical 
temperature is related to the Ms temperature which characterizes the martensitic phase 
transition. Finally, the temperature dependence of Poisson's ratio is described in terms of a 
theory of anelastic behaviour under multiaxial strains, based on the standard anelastic solid 
model. 

1, I n t r o d u c t i o n  
A strongly temperature-dependent internal friction 
has been observed in iron for many years (see Ch. 1 of 
Nowick and Berry). In fact, ' an internal friction peak 
and a modulus relaxation, AE, where E is Young's 
modulus, occur around room temperature, when the 
frequency of vibration is of the order of one cycle per 
second. According to the very well known Snoek 
model [2, 3] this anelasticity is associated with the 
stress-induced preferential distribution of carbon or 
nitrogen atoms in the primary solid solution of alpha- 
iron. Kimura [4], on the other hand, observed a AE 
effect and an internal friction peak in F e - C  alloys that 
he attributed to the ferromagnetic compound cemen- 
rite, which has a Curie point at 488 K. Mild steels also 
disclose an anomalous magnetic after-effect which 
cannot be understood from magnetic considerations 
alone, as was first demonstrated by Ewing [5]. More- 
over, in careful observations of  both the magnetic and 
the mechanical after-effect in carbonyl iron, Richter 
[6] demonstrated the very close relationship between 
the mechanical and the magnetic after-effects. In fact, 
both effects have the same heat of activation (of the 
order of 82 kJ tool ~) and the same temperature coef- 
ficient for their magnitude, i.e. -0 .003 ,  near room 

temperature. Of importance was Richter's observation 
that a strong magnetic field suppressed the magnetic 
after-effect but had no influence upon the mechanical 
after-effect. It was therefore evident that their com- 
mon origin was of a mechanical rather than of a 
magnetic nature. In nearly random or at least partially 
disordered ferromagnetic alloys there is ample evi- 
dence for the existence of a coupling between magnet- 
ization and the equilibrium state of short-range order. 
Since magnetization is a directional quantity, the 
coupling is such that the equilibrium atomic arrange- 
ment in each domain exhibits a degree of directional 
ordering. In general, it can be expected that such 
ordering will be accompanied by a strain, as in fact has 
been demonstrated for the case of carbon or nitrogen 
in alpha-iron by De Vries et al. [7]. 

In the theoretical analysis of  relaxation phenomena 
[1], it is often convenient to describe the magnitude of 
the relaxation in terms of  a quantity known as the 
relaxation strength, which is defined by 

AM = ( M u  - -  MR)/MR (1) 

where Mu and MR are the unrelaxed and relaxed 
moduli, respectively. When the relaxation arises from 
a stress-induced preferential distribution of solute 
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atoms, it may be shown that the temperature depen- 
dence of the relaxation strength is given by [8] 

AM = T o / ( T -  2T0) (2) 

where T is the absolute temperature, 2 is a numerical 
coefficient taking account of the interaction between 
solute atoms which correspond to the Weiss factor in 
the theory of ferromagnetism and T O is a temperature- 
independent term which increases with the concentra- 
tion of solute atoms and the tetragonal distortion 
introduced in the lattice due to the presence of these 
atoms. Equation 2 is inapplicable at temperatures 
below 2T0. However, before this temperature is reached 
from above, there is a critical temperature below 
which there will be a spontaneous ordering of the 
solute atoms under zero stress. At this temperature, 
the interaction between the solute atoms reduces the 
energy of one of them if it goes to an interstice having 
a tetragonal axis parallel to the preponderant axis of 
the other atoms. This is analogous to the Curie tem- 
perature below which the magnetic moments of the 
atoms, or rather the spins of the electrons in a ferro- 
magnetic domain, are oriented in such a way as to 
point at1 along the same direction at zero magnetic field. 
The critical temperature, To, for such a self-induced 
preferential distribution of interstitial solute atoms in 
body-centred cubic lattices has been computed by 
Zener [8] to be 

Tc = 1.052T0 (3) 

and he pointed out that the persistence of the tetra- 
gonal structure of freshly quenched martensite at 
room temperature can be interpreted only as due to 
such self-induced preferential distribution of carbon 
atoms in iron [9]. On assuming 2 to be of the order of 
magnitude of unity, the critical temperature for such 
a spontaneous ordering rises, according to Zener, to 
above room temperature as the carbon content in iron 
reaches 0.14wt %. The solubility of carbon in iron is 
extremely small and segregation will take place even at 
room temperature when a fair amount of carbon is put 
into iron in solid solution. The reversibility is fre- 
quently destroyed by this segregation process and 
after an anneal at high temperatures, below the fer- 
rite-austenite phase transformation temperature, the 
martensitic phase is not restituted. 

Phase transitions were dealt with, in the beginning, 
by phenomenological theories which described the 
phenomena simply on a macroscopic scale containing 
many atoms. In 1937 Landau established his theory of 
second-order phase transitions [i0]. In order to deal 
with phase boundaries, the theory has been generalized 
to Ginzburg-Landau theory by adding a term depend- 
ing on the gradient of the order parameter. Further- 
more, Landau theory has been applied, only recently 
and with reasonable success, to martensitic phase 
transitions [1 I]. 

It is the purpose of this paper to present results on 
the relaxation behaviour of both Young's modulus 
and Poisson's ratio in AISI-1080 steel, in the tempera- 
ture region between about 300 and 600 K. It will be 
shown that both the Snoek relaxation and ordering 
phenomena contribute to the relaxation observed. The 

results will be interpreted in terms of the Snoek effect, 
a relaxation of Young's modulus produced by the 
martensitic phase transition, which will be expressed 
in terms of expressions developed in the paper and 
based on the Landau theory of phase transitions, and 
of a theory of anelastic behaviour under multiaxial 
strains which has been developed elsewhere [12]. 
Finally, a connection between the relaxation of 
both moduli and the martensitic phase transition is 
suggested. 

2. T h e o r y  
Landau in his theory of second-order phase transitions 
[13, 14] assumed the free energy to be an analytic 
function of the order parameter and of temperature. 
Therefore, he expanded the free energy density func- 
tion F, with respect to the order parameter ~, ~ into a 
power series 

~X 4 2 ~ 4 4 F(4, T )  = Fo(T  ) + A4 + ~ + C{ 3 + (4) 

where the coefficients are analytic functions of the 
temperature T. If ~, as usual, is chosen in such a way 
that the high-temperature phase, without external 
field, corresponds to vanishing ~, then we must have a 
minimum of Fa t  ~ = 0 for T > To and consequently 
A = 0. In order to get a second-order phase transition 
at Tc the minimum of F must shift continuously for 
T < Tc. Therefore ~ must change its sign at Tc with 

> 0 for T > To. The simplest possibility to get this 
behaviour is 

= a ( T -  To) 0 < a -- constant (5) 

Furthermore, C = 0 and/3 > 0. Landau assumed 
to be a constant and, consequently, the simplest 
energy function showing a second-order phase tran- 
sition is given by 

F(~, T) = Fo(T ) + a ( T -  To) ~2 -~ + 4 4 (6) 

with a,/~, To > 0 as constants. 
The situation changes considerably if an external 

field is applied. The case where the external field is 
fixed and the temperature is changed will be considered 
first. In this case, two classical interaction terms, 
½7a~ 2 and - Za4, where 7 and Z are positive constants 
and ~r is the external field, can be added to the free 
energy [15]. The term -g~r4 is a classical volumetric 
elastic interaction (Ch. 16 of [1]) which causes the 
anelastic behaviour represented by the standard linear 
solid model. It gives a good description of all the 
anelastic phenomena produced by point defects. The 

1 ~ _~2 term 2~Y~ represents a magnetostrictive interaction 
which has been used with relative success in phase 
transitions controlled by spin reorientation without 
important volumetric changes [16]. In addition, the 
pure elastic energy term should be added to the 
expression for the free energy, leading to 

~X 42 ~ ~4 F(4, T) = Fo(T) + - ~  + + .27 ~2o _ Z?,~ 

(7 2 

2E0e (7) 
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where E0 is Young's modulus and 0 the density of the 
material. Moreover, it follows from the thermo- 
dynamics of non-equilibrium processes that the estab- 
lishment of equilibrium is determined by the kinetic 
condition [17, 18] 

d{ 8F 
- K ( 8 )  

dt 84 

In the absence of an external field, that is for a = 0, 
Equations 7 and 8 lead to the specific spontaneous 
order described by 

~02 = -~ / f l  for T~< Tc 
(9) 

~02 = 0 for T > Tc 

In the presence of an alternative mechanical stress a of 
frequency 09 there appears an alternative component 
of the order parameter ~p (~  ~0) caused by the change 
in the exchange interaction. If ~p -~ exp (iot)  then 
from Equations 7 and 8 it is easy to show that 

~2F 1 1 0K(7~0 - Z) 2 
- 0 ~ -  E -  E 0 2 ~ K +  i~o f o r T <  Tc 

and 

02F 

(10) 

1 0Z 2 
- + fo rT  > T c (11) 

0 8 o  2 E o ~ K  - ico 

On separating real and imaginary parts, expressions 
for the dynamic elastic modulus E and the logarithmic 
decrement 6 which characterizes the internal friction 
are obtained. For T < Tc this separation leads to 

A~ 
E =  E o ( 1  i q~ 702~2" ) (12) 

and 
(D'C 

5 = 2~AE 1 + 602"i~ 2 (13) 

where 

A E = 

and 
= - 1 / 2 ~ K  = 

At low temperatures 

AE "" goo72/2fl 

- E 0 0 ( 7 ~ 0  - Z)2/2~ = KEoo~('y~o - Z) 2 

(14) 

- 1 / 2 a K ( T  - To) (15) 

= constant (16) 

and Equation 12 leads to a classical standard linear 
solid model where E decreases on increasing the tem- 
perature. At high temperatures, that is, when T --+ Tc 

AE ~- - EoOZ2/2~  (17) 

and Equation 12 leads to 

g = E o [ l - P - ( ~ K ) (  1 2;2%.2)1 (18) 

which is similar to the expression for the internal 
friction produced by a standard linear solid [1]. The 
relaxation of the modulus together with the two limit- 
ing expressions for low and high temperatures are 
shown, qualitatively, in Fig. 1, as a function of ooz. 
The actual shape of the curves depend on the ratio 
between the three terms in the expression for A e. 
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Figure 1 Theoretical relaxation curves for Young's modulus pro- 
duced by a phase transition. 

Finally, the order parameter ~0 is zero for T = T c but 
= 40 + {p v~ 0 for T < To. The second-order 

phase transformation is absent under an external elas- 
tic field but the order parameter tends to zero as the 
external field also goes to zero [11]. 

3. Results 
The longitudinal resonant frequencies were measured 
by using the "free-free" or floating beam resonant 
method. The experimental details, the equipment used 
and the way the different magnitudes are measured, 
are given elsewhere [19 22]. Briefly, Young's modulus 
is obtained from the classical equation 

f° - 2L 1 ) (19) 

wheref,  is the resonant frequency of order n (1, 3, 5, 
7 , . . .  for the configuration used), L is the length and 
r the radius of the cylindrical specimen and v is Pois- 
son's ratio. It should be pointed out that good values 
are obtained for Young's modulus, as calculated from 
the measured frequencies, by using only the approxi- 
mate equation 

E = o ( 2 L / n ) Z f  2 (20) 

which neglects the correction term within parentheses 
in Equation 19. Poisson's ratio can be obtained also 
from Equation 19 by measuring the resonant frequen- 
cies at two different harmonics, n and n*, and solving 
for v, that is 

( - .i.. '72  
v = \n*7 ,  .Y,,J r (21) 

on assuming that E is independent of frequency. The 
detailed iterative procedure used to obtain E and v, by 
the method just described, is given elsewhere [22]. 
Finally, specimens of AISI-1080 steel approximately 
150mm long and 7.03mm in diameter were tested. 
The densities of all the specimens, determined with a 
pycnometer at 299K, were 7.8116 + 0.0005gcm -3. 
The temperature was controlled, between room tem- 
perature and 600K, with a proportional controller 
which gave an accuracy of + 2 K. 

Fig. 2 shows Young's modulus as a function of 
temperature for six different harmonics. A drastic 
change in E with temperature can be observed for the 
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Figure 2 Young's modulus as a function of temperature, at different 
harmonics, for AISI-1080 steel, n indicates the order of the harmonic 
used, in longitudinal excitation: n = ( + )  1, (A) 3, ( x ) 5, (e)  7, (o)  
9, (n) 11. 

fundamental frequency, which disappears gradually 
for the other harmonics. The fundamental resonant 
frequency is of the order of 17 kHz and the intersec- 
tion point of the slopes traced on both sides of the 
peak leads to 420 K. If it is assumed that the relaxation 
behaviour is associated with jumps of carbon atoms 
and the relaxation time is given by an Arrhenius-type 
expression, that is 

= To exp ( A H / k T )  (22) 

with zff j = 1.8 x 10-a4sec -I and AH = 80.56kJ 
mol -~ (activation energy) [1], the maximum of the 
Snoek peak, obtained from the condition 2nfr = 1, 
would be located at 440 K. This temperature is very 
close to the one obtained from the middle point of the 
raising part of the peak for Young's modulus, for the 
fundamental frequency, shown in Fig. 2. The relaxation 
behaviour of Young's modulus, however, does not 
follow the general trend expected for a Snoek peak, 
where E should decrease with temperature. Further- 
more, the relaxation decreases as the frequency 
increases, being negligible for the highest harmonics. 
Therefore, the magnitude of the relaxation depends 
not only on temperature but also the frequency of the 
external field plays an important role. 

Fig. 3 shows Poisson's ratio as a function of tem- 
perature, obtained by combining a different pair of 
harmonics. The combinations shown have been selected 
due to the fact, as illustrated by Fig. 2, that Young's 
modulus does not show strong variations for these 
frequencies. Furthermore, the maxima of the curves of 
Fig. 3 shift to higher temperatures when the average 
frequency of the two overtones used increases. Finally, 
it is interesting to point out how the small variations 
in Young's modulus, shown in Fig. 2, are magnified in 
Poisson's ratio. 
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Figure 3 Poisson's ratio as a function of temperature, at different 
combination of harmonics, for AISI-1080 steel. The numbers on 
each curve indicate the pair of harmonics used to obtain v. 

4. Discussion 
It is proposed that the observed relaxation behaviour 
for Young's modulus is produced By the martensitic 
phase transition occurring in the specimen. In fact, 
according to Equation 15 the relaxation time for a 
phase transition varies as (T - T~) -~. A plot of E 
against log coz is then equivalent, at constant fre- 
quency, to a plot orE against log [C/(T  - Tc)] where 
C is a constant. Such a plot, for the curve correspond- 
ing to the fundamental frequency of Fig. 2, is shown 
in Fig. 4. C has been chosen, arbitrarily, to locate the 
curve of Fig. 4 in the same range of the abscissa as Fig. 
1. Furthermore, a critical temperature of 488 K, to be 
discussed later on, has been used. It should be noticed 
that only data for Tlower than 488 K have been taken 
from Fig. 2 to represent the curve shown in Fig. 4. A 
comparison between Figs 1 and 4 shows that the 
relaxation of Young's modulus follows the general 
trend expected for a phase transition. No additional 
information can be obtained since there are too many 
unknown parameters in the theory, and only a quali- 
tative comparison is possible between the experimental 
curve and the predictions of the theoretical model. 
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Figure4 Plot of the curve for n = l of Fig. 2 as a function of 
log [C/(T - To)l, with T c = 488 K. 

4161 



Furthermore, it is difficult to subtract the background 
which influences E at low values of  [C/(T - To)]. The 
temperature chosen for Tc agrees approximately with 
the martensitic starting temperature, Ms, at which the 
martensitic transformation begins when the AISI- 
1080 steel is quenched [23]. In fact, the Ms temperature 
of many steels has been determined by direct measure- 
ments and it can be obtained approximately by using 
empirical formulae such as the one proposed by 
Grange and Stewart [24], that is 

M~(°C) = 538 - 361(%C) - 39(% Mn) 

- 19(% Ni) - 39(%Cr)  - 28(% Mo) (23) 

Equation 23 applies when all carbides are dissolved in 
the austenite, the carbon content is within the range of 
0.20 to 0.85%, the molybdenum content is below 1% 
and the chromium content is lower than 1.5%. A com- 
plete austenization or solution of  carbides, prior to 
quenching, is important since undissolved carbides 
will result in a higher Ms temperature than what would 
be indicated by the actual chemical composition. For  
a composition of 0.82% C and 0.7% Mn, appropriate 
to the steel used, Equation 23 leads to 

Ms = 488K (24) 

which is the temperature used for To. 
Of equal importance is the information on the Mf 

temperature, that is on the temperature at which the 
reaction stops even though retained austenite may still 
exist. The values for Mr, however, are not generally 
available due to the difficulty in measuring small 
amounts of retained austenite (of the order of 5% or 
less). Grange and Stewart [24] have studied the influ- 
ence of carbon content on the proportion of  marten- 
site formed at temperatures below Ms. For  a 0.82% C 
steel the Mf temperature is approximately 361 K. As 
shown by Fig. 2, in fact, E starts to increase above by 
about 361 K and decreases rapidly above the Ms tem- 
perature, for the fundamental resonant frequency. 
This relaxation of the modulus might be produced by 
a stress-induced disordering of  carbon atoms in the 
octahedral sites of the martensitic matrix. In fact, 
micrographs of the specimens show a perlitic structure 
with a high mechanical deformation and a martensitic 
structure partially annealed. Microhardness tests give 
values of the order of  473 to 476HV300, which are 
consistent with a partial tetragonality of  the alpha- 
iron. 

As indicated by Fig. 2, the disordering is not 
produced at unfavourable frequencies. In fact, the 
other harmonics were measured immediately after the 
fundamental and a disordered structure was found 
only for the first but not for the higher harmonics. 
Furthermore, no disordered structure was encountered 
immediately after the interruption of the cyclic external 
field, even if the temperature was maintained below 
the decomposition and precipitation temperatures. In 
addition, another classical behaviour of martensitic 
transformations was observed [25], as shown by Fig. 
5, where the numbers indicate the harmonic used to 
obtain each curve. After the first rise in temperature, 
the specimen was maintained at 333 K for 12 and 44 h 
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Figure 5 Stabilization of Young's modulus by annealing. ( x ) 1st 
rise, (o) 2nd rise, (o) 3rd rise. The second rise in temperature was 
made after maintaining the specimen for 12 h and the third for 44h, 
at 333 K. 

before the second and third rise, respectively. It is seen 
that the beginning of the transformation stabilizes 
with time and higher temperatures are needed to con- 
tinue it. Furthermore, no changes are observed for the 
higher overtones. The increase of the Mf temperature 
is probably due to the diffusion of carbon atoms which 
decreases the solute concentration and consequently 
the interaction between defects. 

The relaxation of Poisson's ratio, shown in Fig. 3, 
can also be explained by a stress-induced reordering of  
carbon atoms. In fact, according to a theory of anelas- 
tic relaxation under multiaxial strains which has been 
developed elsewhere [12], the inflection point on Pois- 
son's ratio occurs at c0r = 1/31/2, for an extension 
along { 1 0 0 )  and a contraction along { 0 1 0 )  or 
{00 1). For  the classical texture obtained in a rod of 
a material with cubic symmetry, like the specimens 
used in this paper, the tensile stress is applied mainly 
along {1 1 0)  and the contraction occurs in a [1 1 0] 
plane. For  a tetragonal defect and after an integration 
over all the directions in this plane, taking into account 
the orientation dependence of v [12], the following 
expression is obtained for Poisson's ratio: 

v = i S ' S " + ( S 1 - S P ) (  $1 +------4---1 -3~SP)° f z~ l /  

[(SH) 2 + (S" - 5p)2cozv~] (25) 

where 

4 Sll -~- 3 1 -- SlZ -- ~ l -- S44 

(26) 

and 
S H = 3sH + 5sl2 + ~s44 (27) 
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sij are the compliances of the cubic crystal, and 6p 
represents the intensity and 'cp the time for the relax- 
ation of (S~l- sea). The curve of v against corp 
described by Equation 25, has an inflection point, 
determined by d2v/d(co'cp) = 0, at 

CO'Cp = sn /31 /2 (S  n --  •p) "~ 1/3  U2 (28) 

which is the same as for the simpler situation of an 
extension and a contraction along the principal axes. 

On assuming that the standard linear solid is a valid 
model so that Equation 12 is applicable, and admit- 
ting that the transversal relaxation obeys Equation 25, 
and in addition that the relaxation times obey an 
Arrhenius relationship (Equation 22) far from the 
critical temperature, then for Young's modulus there 
is an inflection point at 

COE'CE = 1 = COE'CO exp (AH/kTt . )  (29) 

and for Poisson's ratio at 

O)p'cp = C0p'C 0 exp ( A H / k T p )  = 1/31/2 (30) 

where the subindices E and P indicate the applied 
frequencies and the relaxation times for Young's 
modulus and Poisson's ratio, respectively. It has been 
assumed also that both relaxations are controlled by 
the same mechanism, that is r 0 and AH are the same 
for both moduli. T E and Tp are the temperatures at 
which the inflection points occur. On combining 
Equations 29 and 30 it is possible to calculate Tp in 
terms of the measured values for tOE, COp and TE, and 
AH = 80.56kJmol ~ as for Equation 22. This calcu- 
lated value can then be compared with the value 
obtained experimentally. There are some problems, 
however, in obtaining the quantities to be used for the 
calculations. In fact, two frequencies are involved in 
COp and the inflection points in both Figs 2 and 3 are 
difficult to determine. On taking the values at which 
the maxima occur in both figures for TE and Tp and the 
arithmetic average between the two harmonics involved 
for cop, Equations 29 and 30 lead to the values for Tp 
given by the third column of Table I. The,experimental 
values are indicated in the fourth column. It is seen 
that the agreement between experimental and calcu- 
lated values is reasonable, taking into account the 
approximations made, showing that the same mechan- 
ism controls the relaxation of both moduli. A maxi- 
mum devJation occurs between the experimental and 
calculated values for Tp, for a combination between 
the third and the ninth harmonics, which should be 
expected since their frequencies are too far apart. The 
most reliable results are those corresponding to 
adjoining frequencies, where the assumptions made in 
constructing Fig. 3 are more valid. 

T A B  L E 1 Theoretical and experimental values for the maxima 
of Poisson's  ratio, shown in Fig. 3. n and n* indicate the harmonics  
used to calculate v with Equation 21 

/7 n* Tp (K) G (K) 
(theoretical) (experimental) 

3 9 534 513 to 553 
5 7 534 528 
5 9 539 528 
7 9 543 550 

5. Conclusions 
The relaxation behaviour of Young's modulus and 
Poisson's ratio as a function of temperature, observed 
in AISI-1080 steel in the temperature region between 
about 300 and 600 K, is controlled by a stress-assisted 
reorientation of carbon atoms. The temperature depen- 
dence of Poisson's ratio is well described by a theory 
of anelastic behaviour under multiaxial strains, based 
on the standard anelastic solid model. The increases of 
Young's modulus with temperature, observed for data 
obtained at the fundamental resonant frequency, is 
produced by a stress-induced disordering of carbon 
atoms in the octahedral sites of the martensitic matrix. 
In fact this effect is well described, qualitatively, in 
terms of expressions deduced in this paper', which are 
based on Landau theory of second-order phase tran- 
sitions. The critical temperature has been related to 
the Ms and Mr temperatures which characterize the 
martensitic phase transition occurring in the material. 
Finally, the phase transformation is reversible in tem- 
perature as long as the external field is applied and 
disappears when the external vibratory field is 
removed. The order-disorder evolution seems to be 
controlled also by jumps of carbon atoms, according 
td the Snoek model. 
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